Proof that Assets Remain Bounded in Aygari's Model

Here I write a simpler proof of the result in Ayagari (1994) on behavior of cash in hand in the long run. Recall that the optimization problem for the household is given by

$$V(z) = \max u (z - a') + \beta \int V (Ra' + y) dF(y)$$

subject to

 $a' \geq \underline{a}$

where R = 1 + r.

Note: I am going to omit the proof that $V(\cdot)$ is strictly concave, increasing and differentiable. These are standard and follow from SLP.

Claim 1. There exist \underline{z} such that $\forall z > \underline{z}, a'(z) > \underline{a}$.

Proof. To prove this suppose that for a value z', $a'(z') = \underline{a}$ and z'' < z' such that $a'(z'') > \underline{a}$. This means that at z'', we have

$$u'(z'' - a'(z'')) = \beta R \int V'(Ra'(z'') + y) dF(y)$$

and

$$u'(z'-\underline{a}) \ge \beta R \int V'(R\underline{a}+y) dF$$

We have

$$u'(z''-a'(z'')) > u'(z'-\underline{a}) \ge \beta R \int V'(R\underline{a}+y) dF \ge \beta R \int V'(Ra'(z'')+y) dF$$

where all of the above follows from concavity of V and strict concavity of u. The above is a contradiction to the assumption that $a'(z') = \underline{a}$ and $a'(z'') > \underline{a}$. This means that if we consider the set $\mathcal{A} = \{z; a'(z) = \underline{a}\}$ it must be either a closed interval or the entire set $[R\underline{a} + y_{min}, \infty)$. If it is a closed interval then the claim is proved. If it is the entire set of possible values for z, then it must be that

$$V(z) = u(z - \underline{a}) + \beta \int V(R\underline{a} + y) dF$$

and as a result

$$\forall z, V'(z) = u'(z - \underline{a})$$

Moreover, since $a' \geq \underline{a}$ is binding, we must have that

$$u'(z-\underline{a}) \ge \beta R \int V'(R\underline{a}+y) dF = \beta R \int u'(r\underline{a}+y) dF$$

The LHS of the above inequality converges to 0 as z converges to ∞ while the right hand side is a positive number. This is a contradiction to the initial claim and thus we have established it.

Claim 2. The policy function a'(z) is increasing and strictly increasing when the borrowing constraint is slack. Moreover, as $z \to \infty$, $a'(z) \to \infty$.

Proof. As we have shown, the borrowing constraint binds for all values of $z \leq \underline{z}$ and slack for all higher values. Now, suppose consider $z_1 > z_2 > \underline{z}$ and let optimal assets be given by $a_1 \leq a_2$ respectively. We have

$$u'(z_{1} - a_{1}) = \beta R \int V'(Ra_{1} + y) dF$$
$$u'(z_{2} - a_{2}) = \beta R \int V'(Ra_{2} + y) dF$$

By the assumption, $z_1 > z_2$ and $a_1 \le a_2$ which implies that $z_1 - a_1 > z_2 - a_2$. By concavity of V and u, we have

$$u'(z_1 - a_1) < u'(z_2 - a_2)$$
$$\int V'(Ra_1 + y) \, dF \ge \int V'(Ra_2 + y) \, dF$$

which is contradictory to the above Euler equations. This also implies that c(z) = z - a'(z) is strictly increasing in z.

Evidently, if $\lim_{z\to\infty} a'(z) < \infty$, then it must be that $\lim_{z\to\infty} c(z) = \infty$. This implies that $u'(c(z)) \to 0$ while $\beta R \int V'(Ra'(z) + y) dF$ does not. This is a contradiction. The Euler equation combined with $a'(z) \to \infty$ implies that $c(z) \to \infty$.

Claim 3. Consumption policy function satisfies , $\forall \Delta > 0, 0 < c(z + \Delta) - c(z) < \Delta$.

Proof. The left inequality is already shown. In order to show the right inequality, notice that Euler equation at z is given by

$$u'(c(z)) = \beta R \int V'(Ra'(z) + y) dF$$

We therefore have

$$u'(c(z) + \Delta) < \beta R \int V'(Ra'(z) + y) dF$$

That is, at a' = a'(z), a consumer with $z + \Delta$ cash-in-hand, would want to increase her asset holdings. Note that at $a' = a'(z) + \Delta$, we have

$$u'(c(z)) \ge \beta R \int V'(Ra'(z) + R\Delta + y) dF$$

which follows from concavity of V. This implies that $a'(z + \Delta) \in [a'(z), a'(z) + \Delta]$ since the objective is concave. This concludes the proof.

Claim 4. There exists z^* such that for all $z \ge z^*$, $Ra'(z) + y_{max} \le z$.

Proof. Let $z > \underline{z}$. Then the Euler equation is given by

$$u'(c(z)) = \beta R\mathbb{E} \left[u'(c(Ra'(z) + y)) \right]$$

By Mean-value theorem, there must exist $c^{*}(y, z)$ between c(Ra'(z) + y) and $c(\mathbb{E}[Ra'(z) + y])$ such that

$$u'(c(Ra'(z) + y)) - u'(c(Ra'(z) + y_{max})) = u''(c^*(y, z))(c(Ra'(z) + y) - c(Ra'(z) + y_{max}))$$

We can thus write the Euler equation – and simplify the notation, we have

$$u'(c_{t}) = \beta R \left\{ u'(\bar{c}_{t+1}) + \mathbb{E} \left[u''(c_{t+1}^{*}) (c_{t+1} - \bar{c}_{t+1}) \right] \right\}$$

where

$$\overline{c}_{t+1} = c \left(Ra'(z) + y_{max} \right)$$

Note that this is not average consumption at t + 1. We can write

$$\begin{aligned} \left| \mathbb{E} \left[u''\left(c_{t+1}^*\right)\left(c_{t+1} - \overline{c}_{t+1}\right) \right] \right| &\leq \left| \mathbb{E} \left[u''\left(c_{t+1}^*\right) \right] \right| \left(y_{max} - y_{min}\right) \\ &\leq \mathbb{E} \left[\left| u''\left(c_{t+1}^*\right) \right| \right] \left(y_{max} - y_{min}\right) \\ &\leq \mathbb{E} \left[\frac{u'\left(c_{t+1}^*\right)}{c_{t+1}^*} \right] B \left(y_{max} - y_{min}\right) \end{aligned}$$

where in the above we have used Claim 3 and the fact that

$$-\frac{u''\left(c\right)c}{u'\left(c\right)} \le B$$

The fact that the above holds, implies that

$$\frac{u'\left(c_{2}\right)}{u'\left(c_{1}\right)} \leq \left(\frac{c_{2}}{c_{1}}\right)^{-B}$$

where $c_2 > c_1$. This can be shown by writing the inequality as $-\frac{u''}{u'} \leq \frac{B}{c}$ and integrating both sides. Using the above inequality, we see that

$$\min\left\{1, \left(\frac{\overline{c}_{t+1}}{c_{t+1}^*}\right)^{-B}\right\} \le \frac{u'\left(c_{t+1}^*\right)}{u'\left(\overline{c}_{t+1}\right)} \le \max\left\{\left(\frac{c_{t+1}^*}{\overline{c}_{t+1}}\right)^{-B}, 1\right\}$$

Now by claim 3, we know that $\frac{\overline{c}_{t+1}}{c_{t+1}^*} \to 1$ as $z \to \infty$, since $c_{t+1}^* \to \infty$ as $z \to \infty$ which then implies that $\frac{u'(c_{t+1}^*)}{u'(\overline{c}_{t+1})} \to 1$ as $z \to \infty$. Therefore, the above implies that

$$\lim_{z \to \infty} \frac{\mathbb{E}u'(c_{t+1})}{u'(\bar{c}_{t+1})} = 1 + \lim_{z \to \infty} \frac{\mathbb{E}\left[u''(c_{t+1}^*)(c_{t+1} - \bar{c}_{t+1})\right]}{u'(\bar{c}_{t+1})}$$
$$\leq 1 + \lim_{z \to \infty} \frac{\mathbb{E}\left[\frac{u'(c_{t+1}^*)}{c_{t+1}^*}B\left(y_{max} - y_{min}\right)\right]}{u'(\bar{c}_{t+1})}$$
$$= 1 + B\left(y_{max} - y_{min}\right)\lim_{z \to \infty} \mathbb{E}\left[\frac{u'(c_{t+1}^*)}{\bar{c}_{t+1}u'(\bar{c}_{t+1})}\right]$$
$$= 1$$

This means that for any ε , there exists a z_{ε} high enough, so that for all higher z,

$$\frac{\mathbb{E}u'\left(c_{t+1}\right)}{u'\left(\overline{c}_{t+1}\right)} = \frac{u'\left(c_{t}\right)}{\beta Ru'\left(\overline{c}_{t+1}\right)} \le 1 + \varepsilon$$

We can choose ε so that $(1 + \varepsilon) \beta R < 1$. This means that $u'(c_t) = u'(c(z)) < u'(\overline{c}_{t+1}) = u'(c(Ra'(z) + y_{max})), \forall z > z_{\varepsilon}$. Since u' is decreasing and $c(\cdot)$ is increasing, we have that $z > Ra'(z) + y_{max}$ which establishes the claim. \Box

In the above proof, we used the fact that relative risk aversion is bounded above. Suppose that it is not and that utility function is given by

$$u\left(c\right) = -e^{-\psi c}$$

In this case, the solution of the unconstrained problem – without the borrowing constraints – can be found as follows:

$$-e^{-\gamma z+A} = \max_{a'} -e^{-\alpha(z-a')} - \beta \int e^{-\gamma(Ra'+y)+A} dF$$

where we have guessed that $V(z) = -e^{-\gamma z + A}$. The FOC is

$$e^{-\alpha(z-a')} = \beta R e^{-\gamma R a'} \int e^{-\gamma(y+A)} dF$$

Taking logs, we have

$$-\alpha \left(z - a'\right) = A + \log \left(\beta R\right) + \log \left(\mathbb{E}e^{-\gamma y}\right) - \gamma Ra' \to a' = \frac{\alpha}{\alpha + \gamma R}z + \kappa$$

Replacing in the definition of the value function, we get that

$$\gamma = \frac{\alpha \gamma R}{\alpha + \gamma R} \to \alpha + \gamma R = \alpha R \to \gamma = \frac{\alpha \left(R - 1 \right)}{R} = \frac{\alpha r}{1 + r}$$

and

$$z' = \frac{R\alpha}{\alpha + \gamma R} z + y + R\kappa$$
$$= z + y + R\kappa$$

We see that even though interest rates are low, cash-in-hand is a random walke with a drift and so it will not stay bounded. One can show that as cashin-hand becomes large, the model with the borrowing constraint behaves like the one without. This proves that the assumption of bounded risk-aversion has some bite.