
Proof that Assets Remain Bounded in Aygari’s Model
Here I write a simpler proof of the result in Ayagari (1994) on behavior

of cash in hand in the long run. Recall that the optimization problem for the
household is given by

V (z) = maxu (z − a′) + β

∫
V (Ra′ + y) dF (y)

subject to
a′ ≥ a

where R = 1 + r.
Note: I am going to omit the proof that V (·) is strictly concave, increas-

ing and differentiable. These are standard and follow from SLP.

Claim 1. There exist z such that ∀z > z, a′ (z) > a.

Proof. To prove this suppose that for a value z′, a′ (z′) = a and z′′ < z′ such
that a′ (z′′) > a. This means that at z′′, we have

u′ (z′′ − a′ (z′′)) = βR

∫
V ′ (Ra′ (z′′) + y) dF (y)

and
u′ (z′ − a) ≥ βR

∫
V ′ (Ra+ y) dF

We have

u′ (z′′ − a′ (z′′)) > u′ (z′ − a) ≥ βR

∫
V ′ (Ra+ y) dF ≥ βR

∫
V ′ (Ra′ (z′′) + y) dF

where all of the above follows from concavity of V and strict concavity of
u. The above is a contradiction to the assumption that a′ (z′) = a and
a′ (z′′) > a. This means that if we consider the set A = {z; a′ (z) = a} it
must be either a closed interval or the entire set [Ra+ ymin,∞). If it is a
closed interval then the claim is proved. If it is the entire set of possible
values for z, then it must be that

V (z) = u (z − a) + β

∫
V (Ra+ y) dF

and as a result
∀z, V ′ (z) = u′ (z − a)
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Moreover, since a′ ≥ a is binding, we must have that

u′ (z − a) ≥ βR

∫
V ′ (Ra+ y) dF = βR

∫
u′ (ra+ y) dF

The LHS of the above inequality converges to 0 as z converges to ∞ while
the right hand side is a positive number. This is a contradiction to the initial
claim and thus we have established it.

Claim 2. The policy function a′ (z) is increasing and strictly increasing when
the borrowing constraint is slack. Moreover, as z →∞, a′ (z)→∞.

Proof. As we have shown, the borrowing constraint binds for all values of
z ≤ z and slack for all higher values. Now, suppose consider z1 > z2 > z and
let optimal assets be given by a1 ≤ a2 respectively. We have

u′ (z1 − a1) = βR

∫
V ′ (Ra1 + y) dF

u′ (z2 − a2) = βR

∫
V ′ (Ra2 + y) dF

By the assumption, z1 > z2 and a1 ≤ a2 which implies that z1−a1 > z2−a2.
By concavity of V and u, we have

u′ (z1 − a1) < u′ (z2 − a2)∫
V ′ (Ra1 + y) dF ≥

∫
V ′ (Ra2 + y) dF

which is contradictory to the above Euler equations. This also implies that
c (z) = z − a′ (z) is strictly increasing in z.

Evidently, if limz→∞ a
′ (z) <∞, then it must be that limz→∞ c (z) =∞.

This implies that u′ (c (z))→ 0 while βR
∫
V ′ (Ra′ (z) + y) dF does not. This

is a contradiction. The Euler equation combined with a′ (z) → ∞ implies
that c (z)→∞.

Claim 3. Consumption policy function satisfies ,∀∆ > 0, 0 < c (z + ∆) −
c (z) < ∆.

Proof. The left inequality is already shown. In order to show the right in-
equality, notice that Euler equation at z is given by

u′ (c (z)) = βR

∫
V ′ (Ra′ (z) + y) dF
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We therefore have

u′ (c (z) + ∆) < βR

∫
V ′ (Ra′ (z) + y) dF

That is, at a′ = a′ (z), a consumer with z + ∆ cash-in-hand, would want to
increase her asset holdings. Note that at a′ = a′ (z) + ∆, we have

u′ (c (z)) ≥ βR

∫
V ′ (Ra′ (z) +R∆ + y) dF

which follows from concavity of V . This implies that a′ (z + ∆) ∈ [a′ (z) , a′ (z) + ∆]
since the objective is concave. This concludes the proof.

Claim 4. There exists z∗ such that for all z ≥ z∗, Ra′ (z) + ymax ≤ z.

Proof. Let z > z. Then the Euler equation is given by

u′ (c (z)) = βRE [u′ (c (Ra′ (z) + y))]

By Mean-value theorem, there must exist c∗ (y, z) between c (Ra′ (z) + y) and
c (E [Ra′ (z) + y]) such that

u′ (c (Ra′ (z) + y))−u′ (c (Ra′ (z) + ymax)) = u′′ (c∗ (y, z)) (c (Ra′ (z) + y)− c (Ra′ (z) + ymax))

We can thus write the Euler equation – and simplify the notation, we have

u′ (ct) = βR
{
u′ (ct+1) + E

[
u′′
(
c∗t+1

)
(ct+1 − ct+1)

]}
where

ct+1 = c (Ra′ (z) + ymax)

Note that this is not average consumption at t+ 1. We can write∣∣E [u′′ (c∗t+1

)
(ct+1 − ct+1)

]∣∣ ≤ ∣∣E [u′′ (c∗t+1

)]∣∣ (ymax − ymin)

≤ E
[∣∣u′′ (c∗t+1

)∣∣] (ymax − ymin)

≤ E

[
u′
(
c∗t+1

)
c∗t+1

]
B (ymax − ymin)

where in the above we have used Claim 3 and the fact that

−u
′′ (c) c

u′ (c)
≤ B
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The fact that the above holds, implies that

u′ (c2)

u′ (c1)
≤
(
c2

c1

)−B
where c2 > c1. This can be shown by writing the inequality as −u′′

u′
≤ B

c
and

integrating both sides. Using the above inequality, we see that

min

{
1,

(
ct+1

c∗t+1

)−B}
≤
u′
(
c∗t+1

)
u′ (ct+1)

≤ max

{(
c∗t+1

ct+1

)−B
, 1

}

Now by claim 3, we know that c̄t+1

c∗t+1
→ 1 as z →∞, since c∗t+1 →∞ as z →∞

which then implies that
u′(c∗t+1)
u′(ct+1)

→ 1 as z →∞. Therefore, the above implies
that

lim
z→∞

Eu′ (ct+1)

u′ (ct+1)
= 1 + lim

z→∞

E
[
u′′
(
c∗t+1

)
(ct+1 − ct+1)

]
u′ (ct+1)

≤ 1 + lim
z→∞

E
[
u′(c∗t+1)
c∗t+1

B (ymax − ymin)

]
u′ (ct+1)

= 1 +B (ymax − ymin) lim
z→∞

E

[
u′
(
c∗t+1

)
ct+1u′ (ct+1)

]
= 1

This means that for any ε, there exists a zε high enough, so that for all higher
z,

Eu′ (ct+1)

u′ (ct+1)
=

u′ (ct)

βRu′ (ct+1)
≤ 1 + ε

We can choose ε so that (1 + ε) βR < 1. This means that u′ (ct) = u′ (c (z)) <
u′ (ct+1) = u′ (c (Ra′ (z) + ymax)),∀z > zε. Since u′ is decreasing and c (·) is
increasing, we have that z > Ra′ (z) + ymax which establishes the claim.

In the above proof, we used the fact that relative risk aversion is bounded
above. Suppsoe that it is not and that utility function is given by

u (c) = −e−ψc
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In this case, the solution of the unconstrained problem – without the bor-
rowing constraints – can be found as follows:

−e−γz+A = max
a′
−e−α(z−a′) − β

∫
e−γ(Ra′+y)+AdF

where we have guessed that V (z) = −e−γz+A. The FOC is

e−α(z−a′) = βRe−γRa
′
∫
e−γ(y+A)dF

Taking logs, we have

−α (z − a′) = A+ log (βR) + log
(
Ee−γy

)
− γRa′ → a′ =

α

α + γR
z + κ

Replacing in the definition of the value function, we get that

γ =
αγR

α + γR
→ α + γR = αR→ γ =

α (R− 1)

R
=

αr

1 + r

and

z′ =
Rα

α + γR
z + y +Rκ

= z + y +Rκ

We see that even though interest rates are low, cash-in-hand is a random
walke with a drift and so it will not stay bounded. One can show that as cash-
in-hand becomes large, the model with the borrowing constraint behaves like
the one without. This proves that the assumption of bounded risk-aversion
has some bite.
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