Discussion of Equilibrium Bank Runs Revisited by Ed Nosal

Ali Shourideh

NYU, Wharton

November 2011

Ali Shourideh(PENN, NYU)

Discussion of Equilibrium Bank Runs Revisited

• Does maturity mismatch lead to fragility and inefficiency?

- Does maturity mismatch lead to fragility and inefficiency?
- Can banks designs optimal contracts that prevent runs or do we need FDIC?

- Does maturity mismatch lead to fragility and inefficiency?
- Can banks designs optimal contracts that prevent runs or do we need FDIC?
 - FDIC has its own issues: Kareken-Wallace

- Does maturity mismatch lead to fragility and inefficiency?
- Can banks designs optimal contracts that prevent runs or do we need FDIC?

• FDIC has its own issues: Kareken-Wallace

• Many models: Bank runs do arise Diamond-Dybvig, Peck-Shell, Ennis-Keister

- Does maturity mismatch lead to fragility and inefficiency?
- Can banks designs optimal contracts that prevent runs or do we need FDIC?

• FDIC has its own issues: Kareken-Wallace

- Many models: Bank runs do arise Diamond-Dybvig, Peck-Shell, Ennis-Keister
- This paper: Enriching the contracts offered can prevent bank runs

• Bank Runs: Implementation question.

- Bank Runs: Implementation question.
- We know the allocation that we like (no bank run): How can we implement it?

- Bank Runs: Implementation question.
- We know the allocation that we like (no bank run): How can we implement it?
- There is a lot to be learned from the implementation literature (social choice and Mechanism Design):

- Bank Runs: Implementation question.
- We know the allocation that we like (no bank run): How can we implement it?
- There is a lot to be learned from the implementation literature (social choice and Mechanism Design):
 - What conditions should an allocation rule have so that it can be implemented?
 - $\circ~$ What environments allow for implementation?

- Bank Runs: Implementation question.
- We know the allocation that we like (no bank run): How can we implement it?
- There is a lot to be learned from the implementation literature (social choice and Mechanism Design):
 - What conditions should an allocation rule have so that it can be implemented?
 - $\circ~$ What environments allow for implementation?
- My discussion:
 - $\circ~$ Implementation Theory
 - What's so special about this environment?
 - $\circ~$ I view Ed's paper as closing a gap between two literatures

 $\bullet~N$ agents

• N agents

• Possible states of the world: $\theta = (\theta_1, \cdots, \theta_N) \in \Theta$

 $\circ \theta_i$: patient/impatient; place in line(if known)

Implementation Problem

• N agents

- Possible states of the world: θ = (θ₁, · · · , θ_N) ∈ Θ
 ο θ_i: patient/impatient; place in line(if known)
- Allocation and preferences: $x = (x_1, \dots, x_N); u_i(x_i, \theta_i)$
 - Set of outcomes: $x \in X$.
 - $x_i = (c_1^i, c_2^i)$

Implementation Problem

• N agents

- Possible states of the world: θ = (θ₁, · · · , θ_N) ∈ Θ
 ο θ_i: patient/impatient; place in line(if known)
- Allocation and preferences: x = (x₁, · · · , x_N); u_i(x_i, θ_i)
 o Set of outcomes: x ∈ X.
 o x_i = (cⁱ₁, cⁱ₂)
- Social choice function: $x(\theta) = (x_1(\theta), \cdots, x_N(\theta)), x : \Theta \to X$

• Mechanism: (M,g):

• Mechanism: (M,g):

• messages: $m = (m_1, \cdots, m_N) \in M$; m_i : message by agent *i*

• Mechanism: (M,g):

◦ messages: $m = (m_1, \cdots, m_N) \in M$; m_i : message by agent *i*

 \circ outcome function: $g: M \to X$

• Mechanism: (M,g):

• messages: $m = (m_1, \cdots, m_N) \in M$; m_i : message by agent i

- $\circ~$ outcome function: $g:M \rightarrow X$
- Defines a game between agents

• Mechanism: (M,g):

• messages: $m = (m_1, \cdots, m_N) \in M$; m_i : message by agent i

 $\circ~$ outcome function: $g:M \rightarrow X$

• Defines a game between agents

• Example: Revelation game, $M = \Theta, g(\theta) = x(\theta)$.

• Mechanism: (M,g):

◦ messages: $m = (m_1, \cdots, m_N) \in M$; m_i : message by agent i

 \circ outcome function: $g: M \to X$

• Defines a game between agents

- Example: Revelation game, $M = \Theta, g(\theta) = x(\theta)$.
- Strong Implementation:

The mechanism (M, g) strongly implements the social choice function $x(\theta)$ if the Bayesian game defined by (M, g) has a unique Bayesian Perfect Equilibrium m^* such that

 $g(m^*(\theta)) = x(\theta), \forall \theta \in \Theta$

• What properties should the social choice function have so that it can be strongly implemented?

Implementation Problem

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:

 $E_{\theta_{-i}}\left[u^{i}(x_{i}(\theta_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right] \geq E_{\theta_{-i}}\left[u^{i}(x_{i}(\hat{\theta}_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right], \ \forall \theta_{i}, \hat{\theta}_{i}$

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:

$$E_{\theta_{-i}}\left[u^{i}(x_{i}(\theta_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right] \geq E_{\theta_{-i}}\left[u^{i}(x_{i}(\hat{\theta}_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right], \ \forall \theta_{i}, \hat{\theta}_{i}$$

• Green-Lin: When θ_i 's are i.i.d, revelation game has a unique equilibrium

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:

$$E_{\theta_{-i}}\left[u^{i}(x_{i}(\theta_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right] \geq E_{\theta_{-i}}\left[u^{i}(x_{i}(\hat{\theta}_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right], \ \forall \theta_{i}, \hat{\theta}_{i}$$

- Green-Lin: When θ_i 's are i.i.d, revelation game has a unique equilibrium
- This is not enough; There might be other equilibria to the revelation game with correlated types: Ennis-Keister

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:
- Bayesian Monotonicity

Implementation Problem

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:
- Bayesian Monotonicity

For any reporting strategy $\sigma(\theta) = (\sigma_1(\theta_1), \cdots, \sigma_N(\theta_N))$, there exists i and a function $y_i : \Theta_{-i} \to X$ such that

 $E_{\theta_{-i}}\left[u^{i}(x_{i}(\theta_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right] \geq E_{\theta_{-i}}\left[u^{i}(y_{i}(\theta_{-i}),\theta_{i})|\theta_{i}\right]$

for all θ_i and for some θ'_i

 $E_{\theta_{-i}}\left[u^i(x_i(\sigma(\theta_i, \theta_{-i})), \theta'_i)|\theta'_i\right] < E_{\theta_{-i}}\left[u^i(y_i(\theta_{-i}), \theta'_i)|\theta'_i\right]$

Implementation Problem

- What properties should the social choice function have so that it can be strongly implemented?
- Revelation Principle It should be incentive compatible:
- Bayesian Monotonicity

For any reporting strategy $\sigma(\theta) = (\sigma_1(\theta_1), \cdots, \sigma_N(\theta_N))$, there exists i and a function $y_i : \Theta_{-i} \to X$ such that

 $E_{\theta_{-i}}\left[u^{i}(x_{i}(\theta_{i},\theta_{-i}),\theta_{i})|\theta_{i}\right] \geq E_{\theta_{-i}}\left[u^{i}(y_{i}(\theta_{-i}),\theta_{i})|\theta_{i}\right]$

for all θ_i and for some θ'_i

 $E_{\theta_{-i}}\left[u^i(x_i(\sigma(\theta_i, \theta_{-i})), \theta'_i)|\theta'_i\right] < E_{\theta_{-i}}\left[u^i(y_i(\theta_{-i}), \theta'_i)|\theta'_i\right]$

• For any lying strategy by others -i, the designer can offer y to player i and he would prefer y to the original allocation at some state of the world.

Ali Shourideh(PENN, NYU)

Discussion of Equilibrium Bank Runs Revisited

Theorem (Jackson, 1991)

When $N \geq 3$, a social choice function $x(\theta)$ is strongly implementable if and only if it satisfies Bayesian Monotonicity and Incentive Compatibility (and some other technical condition).

- Unfortunately Jackson uses non-existence methods to implement.
- Alternatively, Repullo and Moore (Bassetto and Phelan), subgame perfect implementation.
- Conjecture: Bayesian monotonicity is satisfied by the efficient outcome.(Of course Ed proves this!)

- This paper:
 - message space: Patient, Impatient, Flag

- This paper:
 - $\circ\,$ message space: Patient, Impatient, Flag
 - $\circ~$ Design outcome function so that:
 - u^i (Flag, High Prob of Lying by Others) > u^i (Lie, High Prob of Lying by Others)

- This paper:
 - $\circ\,$ message space: Patient, Impatient, Flag
 - $\circ~$ Design outcome function so that:
 - u^i (Flag, High Prob of Lying by Others) > u^i (Lie, High Prob of Lying by Others)
 - u^i (Lie, High prob of Flag by Others) > u^i (Flag, High prob of Flag by Others)

- This paper:
 - $\circ\,$ message space: Patient, Impatient, Flag
 - $\circ~$ Design outcome function so that:
 - u^i (Flag, High Prob of Lying by Others) > u^i (Lie, High Prob of Lying by Others)
 - u^i (Lie, High prob of Flag by Others) > u^i (Flag, High prob of Flag by Others)
 - Truth-telling is unique equilibrium.

• How does it work?

• How does it work?

• If *i* Flags and no one says patient:

 $c_2(m^{k-1}, \operatorname{Flag}) = c_1^{TRG}(m^{k-1}, Impatient)(1+\epsilon)$

• How does it work?

• If *i* Flags and no one says patient:

$$c_2(m^{k-1}, \operatorname{Flag}) = c_1^{TRG}(m^{k-1}, Impatient)(1+\epsilon)$$

• If i says Impatient, i = N, and no one says patient:

$$c_1(m^{k-1}, Impatient) = c_1^{TRG}(m^{k-1}, Impatient) + \Delta$$

 Δ : the amount planner doesn't carry over to next period (when some people Flag); when ϵ small, Δ large

• How does it work?

• If *i* Flags and no one says patient:

$$c_2(m^{k-1}, \operatorname{Flag}) = c_1^{TRG}(m^{k-1}, Impatient)(1+\epsilon)$$

• If i says Impatient, i = N, and no one says patient:

$$c_1(m^{k-1}, Impatient) = c_1^{TRG}(m^{k-1}, Impatient) + \Delta$$

 Δ : the amount planner doesn't carry over to next period (when some people Flag); when ϵ small, Δ large

• If everybody says Impatient, Flag is Best Response.

• How does it work?

• If i Flags and no one says patient:

$$c_2(m^{k-1}, \operatorname{Flag}) = c_1^{TRG}(m^{k-1}, Impatient)(1+\epsilon)$$

• If i says Impatient, i = N, and no one says patient:

$$c_1(m^{k-1}, Impatient) = c_1^{TRG}(m^{k-1}, Impatient) + \Delta$$

 Δ : the amount planner doesn't carry over to next period (when some people Flag); when ϵ small, Δ large

- If everybody says Impatient, Flag is Best Response.
- If everybody Flags, saying Impatient is Best Response.

Ali Shourideh(PENN, NYU)

Question _____

- It would be good if we could see a real world implementation too:
 A sequence of interest rates and suspension rules
 - $\circ~$ The $i\mbox{-th}$ person in line is offered a menu of (with drawal quantity, interest rate) up to a suspension limit

• Bank Runs \equiv Impossibility Theorem

• Bank Runs \equiv Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.

- Bank Runs ≡ Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.
- What can cause Bank Runs?

- Bank Runs ≡ Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.
- What can cause Bank Runs?
- Can we get rid of complexity?
 - $\circ~$ Non-exclusivity or hidden trade?

- Bank Runs \equiv Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.
- What can cause Bank Runs?
- Can we get rid of complexity?
 - $\circ~$ Non-exclusivity or hidden trade?
 - $\circ~$ The mechanism designer and agents have a lot of information. What if not?

- Bank Runs ≡ Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.
- What can cause Bank Runs?
- Can we get rid of complexity?
 - $\circ~$ Non-exclusivity or hidden trade?
 - $\circ~$ The mechanism designer and agents have a lot of information. What if not?
 - $\circ \ {\rm Commitment?}$

- Bank Runs \equiv Impossibility Theorem There is no mechanism that uniquely implements the efficient allocation.
- What can cause Bank Runs?
- Can we get rid of complexity?
 - Non-exclusivity or hidden trade?
 - $\circ~$ The mechanism designer and agents have a lot of information. What if not?
 - $\circ~{\rm Commitment?}$
- Overall, very nice paper, I enjoyed it a lot.